sair dos eixos - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

sair dos eixos - traduzione in russo

Teorema de steiner; Teorema dos eixos paralelos

sair dos eixos      
выбиться из колеи
sair dos eixos      
выбиться из колеи
eixo         
PÁGINA DE DESAMBIGUAÇÃO DE UM PROJETO DA WIKIMEDIA
Came (ressalto); Eixos
{m}
- ось;
- (машин.) вал, ось; шпиндель

Definizione

ГАРРИНЧА
Гарринша (Garrincha) Мануэл Франсиску дус Сантос (1933-83), бразильский спортсмен (футбол). Выступал в составе команды "Ботафого" (Рио-де-Жанейро) в 1953-65. Чемпион мира 1958 и 1962. Один из лучших крайних нападающих в истории мирового футбола.
---
Гарринша (Gаrrincha) Мануэл Франсиску дус Сантос (28 октября 1933, Пау-Гранде, округ Маже, штат Гуанабара - 20 января 1983, Рио-де-Жанейро), бразильский спортсмен. Двукратный чемпион мира (1958 и 1962) по футболу в составе национальной сборной. Лучший правый крайний нападающий в истории мирового футбола. Неудержимый Дед и отец его были родом из небольшого индейского племени фулнио из штата Алагоас. Гарринча отличался свободолюбивым и независимым характером. В 20 лет он вышел на поле знаменитого клуба "Ботафого" (Рио-де-Жанейро) и, показав целый каскад оригинальных финтов, легко обыграл защитника сборной Бразилии Н. Сантоса; после этого был сразу зачислен в команду (1953). В первом же матче забил три гола. В 1958 на чемпионате мира в Швеции вышел на поле в матче со сборной СССР вместе с 17-летним Пеле и устроил яркий "бенефис" футбола, о котором с восторгом вспоминали очевидцы. В течение 8 лет сборная Бразилии не проиграла ни одного матча, пока в ее составе играли Пеле и Гарринча. Тренеры "Ботафого" и сборной предоставили Гарринче полную свободу действий на правом фланге, где он был неудержим. "Чарли Чаплин футбола" Так прозвали его журналисты и за походку вразвалочку (ведь одна нога была заметно короче другой) и за элегантное, артистическое обращение с мячом, выражавшееся в точнейших пасах, в искусстве обводки, в мощных и точных ударах по воротам. В каждом сезоне он забивал не менее 20 голов, а лучшими для него как для бомбардира стали 1958 и 1962 - 33 и 35 голов в составе "Ботафого". В середине 1960-х гг. из-за серьезных травм вынужден был пропустить много игр. В 1966 провел последние матчи в составе сборной Бразилии на чемпионате мира в Лондоне (всего сыграл за сборную Бразилии 61 матч и забил 17 голов). После "Ботафого" (1953-65) выступал за клубы "Коринтиас" (Санта-Паулу, 1966), "Фламенго" Рио-де-Жанейро, 1968-69), "Олария" (Рио-де-Жанейро, 1972). После окончания футбольной карьеры работать тренером не смог. Был очень одинок, несмотря на то, что имел 11 дочерей. Не случайно последняя книга о нем, вышедшая после его смерти, называется "Одинокая звезда" (Р. Кастро, 1995).

Wikipedia

Teorema de Steiner

O teorema de Steiner ou teorema dos eixos paralelos é um teorema que permite calcular o momento de inércia de um sólido rígido relativo a um eixo de rotação que passa por um ponto O, quando são conhecidos o momento de inércia relativo a um eixo paralelo ao anterior e que passa pelo centro de massa do sólido e a distância entre os eixos.

Considerando-se:

ICM denota o momento de inércia do objeto sobre o centro de massa,

M a massa do objeto e d a distância perpendicular entre os dois eixos.

Então o momento de inércia sobre o novo eixo z é dado por:

I z = I c m + M d 2 . {\displaystyle I_{z}=I_{cm}+Md^{2}.\,}

Esta regra pode ser aplicada com a regra do estiramento e o teorema dos eixos perpendiculares para encontrar momentos de inércia para uma variedade de formatos.

A regra dos eixos paralelos também aplica-se ao segundo momento de área (momento de inércia de área);

I z = I x + A d 2 . {\displaystyle I_{z}=I_{x}+Ad^{2}.\,}

onde:

Iz é o momento de inércia de área através do eixo paralelo,

Ix é o momento de inércia de área através do centroide da área,

A é a medida de superfície da área, e

d é a distância do novo eixo z ao centroide da área.

O teorema dos eixos paralelos é um dos diversos teoremas referido como teorema de Steiner, devido a Jakob Steiner.